# Nilpotent matrix

###### Posted on 2017년 2월 18일 at 11:40 오전 by ugg

In linear algebra, a nilpotent matrix is a square matrix N such that

N

k

=

0

{\displaystyle N^{k}=0\,}

for some positive integer k. The smallest such k is sometimes called the degree or index of N.[1]

More generally, a nilpotent transformation is a linear transformation L of a vector space such that Lk = 0 for some positive integer k (and thus, Lj = 0 for all j ≥ k).[2][3][4] Both of these concepts are special cases of a more general concept of nilpotence that applies to elements of rings.

Contents

1 Examples

2 Characterization

3 Classification

4 Flag of subspaces

5 Additional properties

6 Generalizations

7 Notes

8 References

9 External links

Examples[edit]

The matrix

M

=

[

0

1

0

0

]

{\displaystyle M={\begin{bmatrix}0&1\\0&0\end{bmatrix}}}

is nilpotent, since M2 = 0. More generally, any triangular matrix with 0s along the main diagonal is nilpotent, with degree

≤

n

{\displaystyle \leq n}

. For example, the matrix

N

=

[

0

2

1

6

0

0

1

2

0

0

0

3

0

0

Tags